Part Number Hot Search : 
07000 VERTICAL 30120 R5F2L388 MAX1102 MBRB20 6OPZV300 S1200
Product Description
Full Text Search
 

To Download APA2171 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . s t e r e o , d i f f e r e n t i a l i n p u t c a p - f r e e l i n e d r i v e r a p a 2 1 7 1 f e a t u r e s g e n e r a l d e s c r i p t i o n a p p l i c a t i o n s s e t - t o p b o x e s c d / d v d p l a y e r s l c d t v s h t i b s ( h o m e t h e a t e r i n b o x ) o p e r a t i n g v o l t a g e : 3 v ~ 3 . 6 v d i f f e r e n t i a l i n p u t g r o u n d r e f e r e n c e o u t p u t - n o o u t p u t c a p a c i t o r r e q u i r e d ( f o r d c b l o c k i n g ) - s a v e t h e p c b s p a c e - r e d u c e t h e b o m c o s t s - i m p r o v e t h e l o w f r e q u e n c y r e s p o n s e l o w n o i s e a n d t h d + n - s n r > 1 0 8 d b - n o i s e < 8 m v r m s - t h d + n < 0 . 0 2 % a t 2 0 h z ~ 2 0 k h z output voltage swing can reach 2.1vrms/ch into 2.5k w at v dd =3.3v high psrr: 80db at 217hz fast start-up time: 500 m s integrate the de-pop circuitry t h e r m a l a n d s h o r t - c i r c u i t p r o t e c t i o n s u r f a c e - m o u n t p a c k a g i n g - s o p - 1 4 - t s s o p - 1 4 l e a d f r e e a n d g r e e n d e v i c e s a v a i l a b l e ( r o h s c o m p l i a n t ) s i m p l i f i e d a p p l i c a t i o n c i r c u i t the APA2171 is a stereo, differential input, single supply, and cap-free line driver, which is available in sop-14 and tssop-14 packages. the APA2171 is ground-reference output, and doesn?t need the output capacitors for dc blocking. the advan- tages of eliminating the output capacitor are saving the cost, eliminating component height, and improving the low frequency response. the external gain setting is recommended using from 1v/v to 10v/v. high psrr provides increased immu- nity to noise and rf rectification. APA2171 has shutdown and under-voltage detector function for depop solution. the APA2171 is capable of driving 2.1v rms at 3.3v into 2.5k w load, and provides short-circuit and thermal pro- tection. apa 2171 stereo input signal stereo line - out signal
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 a p a 2 1 7 1 o r d e r i n g a n d m a r k i n g i n f o r m a t i o n n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j - s t d - 0 2 0 d f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . a n p e c d e f i n e s ? g r e e n ? t o m e a n l e a d - f r e e ( r o h s c o m p l i a n t ) a n d h a l o g e n f r e e ( b r o r c l d o e s n o t e x c e e d 9 0 0 p p m b y w e i g h t i n h o m o g e n e o u s m a t e r i a l a n d t o t a l o f b r a n d c l d o e s n o t e x c e e d 1 5 0 0 p p m b y w e i g h t ) . p i n c o n f i g u r a t i o n a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 ) symbol parameter rating unit v pgnd _ gnd pgnd to gnd voltage - 0.3 to 0.3 v dd supply voltage ( vdd to gnd and pgnd ) - 0.3 to 4 v sd n input voltage (sdn to gnd ) v gnd - 0.3 to v dd +0.3 v ss vss to gnd and pgnd voltage - 6 to 0.3 v out rout and lout to g nd voltage v ss - 0.3 to v dd +0.3 v cpp cpp to pgnd voltage v pgnd - 0.3 to v dd +0.3 v cpn cpn to pgnd voltage v ss - 0.3 to v pgnd +0.3 v t j maximum junction temperature 150 t stg storage temperature range - 65 to +150 t s dr maximum soldering temperature range , 10 seconds 260 o c p d power dissipation internally limited w note1: stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recom- mended operating conditions" is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. rinp 1 v s s 6 c p n 7 8 c p p 9 v d d r o u t 3 g n d 4 s d n 5 10 pgnd 11 uvp 12 lout 13 linn 14 linp rinn 2 a p a 2 1 7 1 t s s o p - 1 4 ( t o p v i e w ) rinp 1 v s s 6 c p n 7 8 c p p 9 v d d r o u t 3 g n d 4 s d n 5 10 pgnd 11 uvp 12 lout 13 linn 14 linp rinn 2 a p a 2 1 7 1 s o p - 1 4 ( t o p v i e w ) apa 2171 package code o : tssop - 14 k : sop - 14 operating ambient temperature range i : - 40 to 85 o c handling code tr : tape & reel assembly material g : halogen and lead free device assembly material handling code temperature range package code apa 2171 o : apa 2171 xxxxx xxxxx - date code xxxxx - date code apa 2171 k : apa 2171 xxxxx
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 3 a p a 2 1 7 1 range symbol parameter min. max. unit v dd supply voltage 3 3.6 v ih high level threshold voltage sdn 1.0 - v il low level threshold voltage sdn - 0.35 v t a operating ambient temperature range - 40 85 o c t j operating junction temperature ran ge - 40 125 o c r l load resistance 16 100k w t h e r m a l c h a r a c t e r i s t i c s symbol parameter typical value unit q ja thermal resistance - junction to ambient ( note 2) tssop - 14 sop - 14 120 120 o c/w n o t e 2 : p l e a s e r e f e r t o ? t h e r m a l p a d c o n s i d e r a t i o n ? . 2 l a y e r e d 5 i n 2 p r i n t e d c i r c u i t b o a r d s w i t h 2 o z t r a c e a n d c o p p e r t h r o u g h s e v e r a l t h e r m a l v i a s . t h e t h e r m a l p a d i s s o l d e r e d o n t h e p c b . r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s e l e c t r i c a l c h a r a c t e r i s t i c s v dd =3.3v, v gnd =v pgnd =0v, v sdn =v dd , c cpf =c cpo =1 m f, c i =1 m f, r l =2.5k w , t a =25 o c, r i =10k w , r f =20k w (unless other- wise noted) APA2171 symbol parameter test condition s min. typ. max. unit i dd v dd supply current - 10 15 ma i sd v dd shutdown current v sdn = 0v - 1 5 m a i l input c urrent sdn - 0. 1 - m a charge pump f osc switching frequency 400 500 600 khz r eq equ ivalent resistance - 21 25 w drivers a vo open loop voltage gain 80 100 - db gw unity gain bandwidth 8 10 - mhz v sr slew rate - 4.5 - v/ m s v os output offset voltage v dd =3.0v to 3.6v, r l = 2.5k w - 5 - 5 mv v n output noise r i =10k w , r f =10k w - 8 15 m v rms t start - up start - up time - 500 - m s psrr power supply rejection ratio v dd =3.0v to 3.6v , v rr =200mv rms f in = 217 hz f in = 1k hz f in = 20k hz - - 80 - 80 - 50 - 60 - 60 - 45 db c l maximum capacitive load - 220 - pf v esd esd protection outr, outl - 8 - kv
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 4 a p a 2 1 7 1 APA2171 symbol parameter test condition s min. typ. max. unit v o output voltage (stereo, in phase) thd +n =1% , f in =1khz r l = 2.5 k w r l = 100 k w 2.0 - 2.1 2.3 - v po output power (stereo, in phase) thd+n=1%, f in =1khz r l =32 w - 20 - mw v o = 2v rms , r l = 2.5 k w f in = 20 hz f in =1 k hz f in = 20k hz 0.01 0.0005 0.01 0.02 0.001 0.02 0.03 0.002 0.03 thd+n total harmonic distortion plus noise po=20mw, rl=32 w f in =1khz 0.01 0.04 0.05 % crosstalk channel separation v o = 2v rms , r l = 2.5 k w f in = 20 hz f in =1 k hz f in = 20k hz 90 90 8 0 100 100 90 110 110 100 db s/n signal to noise ratio v o = 2vrms, r l = 2.5 k w , r i =10k w , r f =10k w , w ith a - weight ing filter 102 108 114 db t sd thermal shutdown protection temperature - 150 - o c uvp function v uvp external under voltage detection - 1.25 - v i hys external under voltage detection hysteresis current - 5.0 - m a e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) v dd =3.3v, v gnd =v pgnd =0v, v sdn =v dd , c cpf =c cpo =1 m f, c i =1 m f, r l =2.5k w , t a =25 o c, r i =10k w , r f =20k w (unless other- wise noted)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 5 a p a 2 1 7 1 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s thd + n vs . output power t h d + n ( % ) output power ( mw ) 0 20 30 40 50 60 0 . 01 10 0 . 1 1 10 in phase out phase v dd = 3 . 3 v r l = 32 w c in = 2 . 2 m f f in = 1 khz a v = 2 v / v thd + n vs . output voltage t h d + n ( % ) output voltage ( v ) 0 . 001 1 0 . 01 0 . 1 0 1 1 . 5 2 2 . 5 10 in phase v dd = 3 . 3 v r l = 600 w c in = 2 . 2 m f f in = 1 khz a v = 2 v / v 0 . 5 thd + n vs . output voltage t h d + n ( % ) 0 . 001 1 0 . 01 0 . 1 10 output voltage ( v ) in phase v dd = 3 . 3 v r l = 10 k w c in = 2 . 2 m f f in = 1 khz a v = 2 v / v 0 1 1 . 5 2 2 . 5 0 . 5 thd + n vs . output voltage t h d + n ( % ) output voltage ( v ) 0 . 001 1 0 . 01 0 . 1 10 in phase v dd = 3 . 3 v r l = 100 k w c in = 2 . 2 m f f in = 1 khz a v = 2 v / v 0 1 1 . 5 2 2 . 5 0 . 5 thd + n vs . frequency t h d + n ( % ) frequency ( hz ) 20 20 k 100 1 k 10 k 0 . 001 0 . 01 1 po = 20 mw po = 10 mw 0 . 1 in phase v dd = 3 . 3 v r l = 32 w c in = 2 . 2 m f a v = 2 v / v po = 2 mw thd + n vs . frequency t h d + n ( % ) frequency ( hz ) 20 20 k 100 1 k 10 k 0 . 0005 0 . 01 0 . 1 1 0 . 001 vo = 2 vrms vo = 1 vrms in phase v dd = 3 . 3 v r l = 600 w c in = 2 . 2 m f a v = 2 v / v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 6 a p a 2 1 7 1 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) thd + n vs . frequency t h d + n ( % ) frequency ( hz ) 20 20 k 100 1 k 10 k 0 . 0005 0 . 01 1 0 . 1 vo = 2 vrms vo = 1 vrms in phase v dd = 3 . 3 v r l = 10 k w c in = 2 . 2 m f a v = 2 v / v 0 . 001 thd + n vs . frequency t h d + n ( % ) frequency ( hz ) 20 20 k 100 1 k 10 k 0 . 0005 0 . 01 1 0 . 1 vo = 2 vrms vo = 1 vrms in phase v dd = 3 . 3 v r l = 100 k w c in = 2 . 2 m f a v = 2 v / v 0 . 001 frequency response frequency ( hz ) 10 200 k 100 1 k 10 k g a i n ( d b ) - 2 + 2 - 350 - 300 - 250 - 200 p h a s e ( d e g ) + 0 + 4 + 6 + 8 + 10 - 150 - 100 + 0 - 50 gain phase v dd = 3 . 3 v r l = 600 w v o = 2 v rms c in = 2 . 2 m f a v = 2 v / v frequency response frequency ( hz ) 10 200 k 100 1 k 10 k g a i n ( d b ) - 2 + 2 - 350 - 300 - 250 - 200 p h a s e ( d e g ) + 0 + 4 + 6 + 8 + 10 - 150 - 100 + 0 - 50 gain phase v dd = 3 . 3 v r l = 10 k w v o = 2 v rms c in = 2 . 2 m f a v = 2 v / v frequency response frequency ( hz ) 10 200 k 100 1 k 10 k g a i n ( d b ) - 2 + 2 - 350 - 300 - 250 - 200 p h a s e ( d e g ) + 0 + 4 + 6 + 8 + 10 - 150 - 100 + 0 - 50 gain phase v dd = 3 . 3 v r l = 100 k w v o = 2 v rms c in = 2 . 2 m f a v = 2 v / v crosstalk vs . frequency c r o s s t a l k ( d b ) - 120 - 60 - 90 - 80 20 20 k 100 1 k 10 k - 110 - 100 - 70 frequency ( hz ) v dd = 3 . 3 v r l = 600 w v o = 2 v rms c in = 1 m f a v = 2 v / v right to left left to right
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 7 a p a 2 1 7 1 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) crosstalk vs . frequency c r o s s t a l k ( d b ) - 120 - 60 - 90 - 80 20 20 k 100 1 k 10 k - 110 - 100 - 70 frequency ( hz ) v dd = 3 . 3 v r l = 2 . 5 k w v o = 2 v rms c in = 1 m f a v = 2 v / v right to left left to right crosstalk vs . frequency c r o s s t a l k ( d b ) - 120 - 60 - 90 - 80 20 20 k 100 1 k 10 k - 110 - 100 - 70 frequency ( hz ) v dd = 3 . 3 v r l = 100 k w v o = 2 v rms c in = 1 m f a v = 2 v / v right to left left to right output noise voltage vs . frequency o u t p u t n o i s e v o l t a g e ( v r m s ) 1 m 2 m 4 m 6 m 8 m 10 m 20 m 20 20 k 100 1 k 10 k frequency ( hz ) v dd = 3 . 3 v r l = 600 w c in = 1 m f a v = 2 v / v a - weighting right channel left channel output noise voltage vs . frequency o u t p u t n o i s e v o l t a g e ( v r m s ) 1 m 2 m 4 m 6 m 8 m 10 m 20 m 20 20 k 100 1 k 10 k frequency ( hz ) v dd = 3 . 3 v r l = 100 k w c in = 1 m f a v = 2 v / v a - weighting right channel left channel psrr vs . frequency p o w e r s u p p l y r e j e c t i o n r a t i o ( d b ) frequency ( hz ) - 100 - 70 - 60 20 20 k 100 1 k 10 k - 90 - 80 - 50 - 40 v dd = 3 . 3 v r l = 600 w c in = 1 m f a v = 2 v / v v rr = 0 . 2 v pp right channel left channel psrr vs . frequency p o w e r s u p p l y r e j e c t i o n r a t i o ( d b ) frequency ( hz ) - 100 - 70 - 60 20 20 k 100 1 k 10 k - 90 - 80 - 50 - 40 v dd = 3 . 3 v r l = 2 . 5 k w c in = 1 m f a v = 2 v / v v rr = 0 . 2 v pp right channel left channel
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 8 a p a 2 1 7 1 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 6 1 2 3 4 5 0 3 . 5 0 . 5 1 3 supply current vs . supply voltage supply voltage ( v ) s u p p l y c u r r e n t ( m a ) 0 1 . 5 2 2 . 5 7 8 no load a v = 2 v / v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 9 a p a 2 1 7 1 p i n d e s c r i p t i o n pin no. name i/o/p function 1 rinp i right channel non - inverting input . 2 rinn i right channel inverting input . 3 rout o right channel output . 4 gnd p signal ground. 5 sdn i shutdown mod control input signal, pull low for shutdown headphone dr iver. this pin should be connect a 100 w protection resistor. 6 vss p headphone driver negative power supply . 7 cpn i/o charge pump flying capacitor negative connection . 8 cpp i/o charge pump flying capacitor positive connection . 9 vdd p supply voltage input. 10 pgnd p power ground. 11 uv p i under voltage protection input. floating or pull ? h ? to disable this function. 12 lout o left channel output . 13 linn i left channel inverting input. 14 linp i left channel non - inverting input. b l o c k d i a g r a m circuit power and depop circuit rout rinn sdn charge pump vdd cpp cpn vss pgnd lout rinp linp linn shutdown under voltage detection circuit thermal and over current protection uvp gnd
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 0 a p a 2 1 7 1 t y p i c a l a p p l i c a t i o n c i r c u i t line driver amplifier 1 . i n v e r t i n g 2 . n o n - i n v e r t i n g circuit power and depop circuit rout rinn sdn charge pump vdd cpp cpn vss pgnd lout rinp linp linn shutdown under voltage detection circuit thermal and over current protection uvp 1 m f c cpf gnd 1 m f ldo 10 m f system power 1 m f shutdown control r - ch input l - ch input r - ch output l - ch output r 1 3 k w r 2 1 k w r 3 50 k w c cpo r fb r fb r in r in c in 1 m f c in 1 m f r sd 100 w circuit power and depop circuit rout rinn charge pump vdd cpp cpn vss pgnd lout rinp linp linn shutdown under voltage detection circuit thermal and over current protection uvp 1 m f c cpf gnd 1 m f ldo 10 m f system power 1 m f r - ch input l - ch input r - ch output l - ch output r 1 3 k w r 2 1 k w r 3 50 k w c cpo r fb r fb r in r in c x 1 m f c x 1 m f c in 1 m f c in 1 m f r x r x sdn shutdown control r sd 100 w
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 1 a p a 2 1 7 1 t y p i c a l a p p l i c a t i o n c i r c u i t ( c o n t . ) line driver amplifier (cont.) 3 . d i f f e r e n t i a l second-order active low-pass filter 1 . d i f f e r e n t i a l circuit power and depop circuit rout rinn charge pump vdd cpp cpn vss pgnd lout rinp linp linn shutdown under voltage detection circuit thermal and over current protection uvp 1 m f c cpf gnd 1 m f ldo 10 m f system power 1 m f r - ch input l - ch input r - ch output l - ch output r 1 3 k w r 2 1 k w r 3 50 k w c cpo r fb r fb r in r in c in 1 m f c in 1 m f c in 1 m f c in 1 m f r in r in r fb r fb sdn shutdown control r sd 100 w circuit power and depop circuit rout rinn charge pump vdd cpp cpn vss pgnd lout rinp linp linn shutdown under voltage detection circuit thermal and over current protection uvp 1 m f c cpf gnd 1 m f ldo 10 m f system power 1 m f r - ch input l - ch input r - ch output l - ch output r 1 3 k w r 2 1 k w r 3 50 k w c cpo r 1 r 1 c 3 c 3 c 3 c 3 r 1 r 1 c 2 c 2 r 2 r 2 r 2 r 2 r 3 r 3 r 3 r 3 c 1 c 1 c 1 c 1 c 1 c 1 c out 220 pf c out 220 pf sdn shutdown control r sd 100 w
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 2 a p a 2 1 7 1 t y p i c a l a p p l i c a t i o n c i r c u i t ( c o n t . ) second-order active low-pass filter 2 . i n v e r t i n g circuit power and depop circuit rout rinn charge pump vdd cpp cpn vss pgnd lout rinp linp linn shutdown under voltage detection circuit thermal and over current protection uvp 1 m f c cpf gnd 1 m f ldo 10 m f system power 1 m f r - ch input l - ch input r - ch output l - ch output r 1 3 k w r 2 1 k w r 3 50 k w c cpo r 2 r 3 c 3 c 3 r 3 r 1 r 1 c 2 c 2 c 1 c 1 r 2 c out 220 pf c out 220 pf c 1 c 1 sdn shutdown control r sd 100 w
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 3 a p a 2 1 7 1 f u n c t i o n d e s c r i p t i o n line driver operation f i g u r e 1 . c a p - f r e e o p e r a t i o n t h e a p a 2 1 7 1 ? s l i n e d r i v e r s u s e a c h a r g e p u m p t o i n v e r t t h e p o s i t i v e p o w e r s u p p l y ( v d d ) t o n e g a t i v e p o w e r s u p p l y ( v s s ) , s e e f i g u r e 1 . t h e h e a d p h o n e d r i v e r s o p e r a t e a t t h i s b i p o l a r p o w e r s u p p l y ( v d d a n d v s s ) a n d t h e o u t p u t s r e f e r - e n c e r e f e r s t o t h e g r o u n d . t h i s f e a t u r e e l i m i n a t e s t h e o u t p u t c a p a c i t o r t h a t i s u s i n g i n c o n v e n t i o n a l s i n g l e - e n d e d h e a d p h o n e d r i v e a m p l i f i e r . c o m p a r e w i t h t h e s i n g l e p o w e r s u p p l y a m p l i f i e r , t h e p o w e r s u p p l y r a n g e h a s a l - m o s t d o u b l e d . thermal protection t h e t h e r m a l p r o t e c t i o n c i r c u i t l i m i t s t h e j u n c t i o n t e m p e r a - t u r e o f t h e a p a 2 1 7 1 . w h e n t h e j u n c t i o n t e m p e r a t u r e e x - c e e d s t j = + 1 5 0 o c , a t h e r m a l s e n s o r t u r n s o f f t h e d r i v e r , a l l o w i n g t h e d e v i c e s t o c o o l . t h e t h e r m a l s e n s o r a l l o w s t h e d r i v e r t o s t a r t - u p a f t e r t h e j u n c t i o n t e m p e r a t u r e d o w n a b o u t 1 2 5 o c . t h e t h e r m a l p r o t e c t i o n i s d e s i g n e d w i t h a 2 5 o c h y s t e r e s i s t o l o w e r t h e a v e r a g e t j d u r i n g c o n t i n u - o u s t h e r m a l o v e r l o a d c o n d i t i o n s , i n c r e a s i n g l i f e t i m e o f t h e i c s . shutdown function i n o r d e r t o r e d u c e p o w e r c o n s u m p t i o n w h i l e n o t i n u s e , t h e a p a 2 1 7 1 c o n t a i n s s h u t d o w n c o n t r o l l e r s t o e x t e r n a l l y t u r n o f f t h e a m p l i f i e r b i a s c i r c u i t r y . t h i s s h u t d o w n f e a t u r e t u r n s t h e a m p l i f i e r o f f w h e n l o g i c l o w i s p l a c e d o n t h e s d n p i n s f o r t h e a p a 2 1 7 1 . t h e t r i g g e r p o i n t b e t w e e n a l o g i c h i g h i s 1 . 0 v a n d l o g i c l o w l e v e l i s 0 . 3 5 v . i t i s r e c o m - m e n d e d t o s w i t c h b e t w e e n g r o u n d a n d t h e s u p p l y v o l t - a g e v d d t o p r o v i d e m a x i m u m d e v i c e p e r f o r m a n c e . b y s w i t c h i n g t h e s d n p i n s t o a l o w l e v e l , t h e a m p l i f i e r e n t e r s a l o w - c o n s u m p t i o n c u r r e n t c i r c u m s t a n c e , c h a r g e p u m p i s d i s a b l e d , a n d i d d f o r t h e a p a 2 1 7 1 i s i n s h u t d o w n m o d e . i n n o r m a l o p e r a t i n g , t h e a p a 2 1 7 1 ? s s d n p i n s s h o u l d b e p u l l e d t o a h i g h l e v e l t o k e e p t h e i c o u t o f t h e s h u t d o w n m o d e . t h e s d n p i n s s h o u l d b e t i e d t o a d e f i n i t e v o l t a g e t o a v o i d u n w a n t e d c i r c u m s t a n c e c h a n g e s . u n d e r - v o l t a g e p r o t e c t i o n external under voltage detection can be used to shut- down the APA2171 before an input device can generate a pop. the shutdown threshold at the uvp pin is 1.25v. the user selects a resistor divider to obtain the shut- down threshold and hysteresis for the specific application. the thresholds can be determined as below: vuvp = ( 1 . 2 5 - 6 m a x r 3 ) x ( r 1 + r 2 ) / r 2 hysteresis = 5 m a x r3 x (r1+r2)/r2 with the condition: r3>>r1//r2 for example, to obtain v uvp =3.8v and 1v hysteresis, r1= 3k w , r2=1k w and r3=50k w . figure 2. under-voltage protection vsystem r1 3k w r2 1k w r3 50k w uvp pin 1.25v 6 m a v dd v dd /2 gnd v out v dd v ss gnd v out conventional line driver cap-free line driver
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 4 a p a 2 1 7 1 a p p l i c a t i o n i n f o r m a t i o n using the APA2171 as a second-order filter several audio dacs used today require an external low- pass filter to remove out-of-band noise. this is possible with the APA2171, as it can be used like a standard op- erational amplifier. several filter topologies can be implemented, both single-ended and differential. in fig- ure 3, a multi-feedback (mfb) with differential input and single-ended input is shown. an ac-coupling capacitor to remove dc content from the source is shown; it serves to block any dc content from the source and lowers the dc-gain to 1, helping reducing the output dc-offset to minimum. f i g u r e 3 . s e c o n d - o r d e r a c t i v e l o w - p a s s f i l t e r table 1 : filter specifications . gain ( v/v ) high pass ( hz ) low pass ( khz ) c1 (p f ) c2 ( pf ) c3 (m f ) r1 ( k w) r2 ( k w) r3 ( k w) - 1 1.6 40 100 680 10 10 10 24 - 1.5 1.3 40 68 680 15 8.2 12 30 - 2 1.6 60 33 150 6.8 15 30 47 - 2 1.6 30 47 470 6.8 15 30 43 - 3.33 1 .2 30 33 470 10 13 43 43 - 10 1.5 30 22 1000 22 4.7 47 27 f o r i n v e r t i n g i n p u t , t h e o v e r a l l g a i n i s : (1) 1 r 2 r a v - = t h e h i g h p a s s f i l t e r ? s c u t o f f f r e q u e n c y i s : (2) 3 c 1 r 2 1 f ) highpass ( c p = t h e l o w p a s s f i l t e r ? s c u t o f f f r e q u e n c y i s : (3) 2 c 1 c 3 r 2 r 2 1 f ) lowpass ( c p = i n p u t c a p a c i t o r , c i i n t h e t y p i c a l a p p l i c a t i o n , a n i n p u t c a p a c i t o r , c i , i s r e q u i r e d t o a l l o w t h e a m p l i f i e r t o b i a s t h e i n p u t s i g n a l t o t h e p r o p e r d c l e v e l f o r o p t i m u m o p e r a t i o n . i n t h i s c a s e , c i a n d t h e m i n i m u m i n p u t i m p e d a n c e r i f r o m a h i g h - p a s s f i l t e r w i t h t h e c o r n e r f r e q u e n c y a r e d e t e r m i n e d i n t h e f o l l o w i n g e q u a t i o n : c i r f r i f i g u r e 4 . t y p i c a l a p p l i c a t i o n c i r c u i t the value of c i must be considered carefully because it directly affects the low frequency performance of the circuit. r i is the external input resistance that typical value is 10k w and the specification calls for a flat bass re- sponse down to 20hz. equation is reconfigured as below: when the input resistance variation is considered, the c i is 0.8 m f, so a value in the range of 1 m f to 2.2 m f would be chosen. a further consideration for this capacitor is the leakage path from the input source through the input net- work (r i + r f , c i ) to the load. this leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, es- pecially in high gain applications. for this reason, a low leakage tantalum or ceramic capacitor is the best choice. when polarized capacitors are used, the negative side of the capacitor should face the amplifiers? input in most applications because the dc level of the amplifiers? in- put is held at gnd. please note that it is important to confirm the capacitor polarity in the application. i n p u t r e s i s t o r , r i t h e g a i n o f t h e a p a 2 1 7 1 i s b e s e t b y t h e e x t e r n a l i n p u t r e s i s t o r ( r i ) a n d e x t e r n a l f e e d b a c k r e s i s t o r ( r f ) . p l e a s e s e e t h e f i g u r e 4 . (4) c r 2 1 f i i ) highpass ( c p = (5) f r 2 1 c ) highpass ( c i i p = r2 cx r3 r1 c3 c2 in out inverting input 6pf cx+cy=c1 cy:internal capacitance(6pf) cy c1 c out 220pf r2 r3 r1 c3 c2 in - out c1 r3 r1 c3 in + r2 differential input 6pf cx+cy=c1 cx cy cy:internal capacitance(6pf) c out 220pf c1
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 5 a p a 2 1 7 1 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) i n p u t r e s i s t o r , r i ( c o n t . ) (6) r r ) a ( gain i f v = the external gain setting is recommended using from -1v/v to -10v/v, and the r i is in the range from 1k w to 47k w . it?s recommended to use 1% tolerance resistor or better. keep the input trace as short as possible to limit the noise injection. the gain is recommended to set -1v/v, and r i is 10k w , and r f is 10k w . f e e d b a c k r e s i s t o r , r f refer the figure 4, the external gain is setting by r i and r f ; and the gain setting is recommended using from -1v/v to -10v/v. the r f is in the range from 4.7k w to 100k w . it?s recommended to use 1% tolerance resistor or better. p o w e r s u p p l y d e c o u p l i n g , c s the APA2171 is a high-performance cmos audio ampli- fier that requires adequate power supply decoupling to ensure the output total harmonic distortion (thd+n) is as low as possible. power supply decoupling also pre- vents the oscillations being caused by long lead length between the amplifier and the speaker. the optimum decoupling is achieved by using two differ- ent types of capacitors that target on different types of noise on the power supply leads. for higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (esr) ceramic capacitor, typically 0.1 m f, is placed as close as possible to the de- vice vdd and pvdd lead for the best performance. for filtering lower frequency noise signals, a large alumi- num electrolytic capacitor of 10 m f or greater placed near the audio power amplifier is recommended. c h a r g e p u m p f l y i n g c a p a c i t o r , c c p f the flying capacitor affects the load transient of the charge pump. if the capacitor?s value is too small, then that will degrade the charge pump?s current driver capability and the performance of line drive amplifier. increasing the flying capacitor?s value will improve the load transient of charge pump. it is recommended using the low esr ceramic capacitors (x7r type is recommend- ed) above 1 m f. c h a r g e p u m p o u t p u t c a p a c i t o r , c c p o the output capacitor?s value affects the power ripple di- rectly at cv ss (v ss ). increasing the value of output capaci- tor reduces the power ripple. the esr of output capacitor affects the load transient of cv ss (v ss ). lower esr and greater than 1 m f ceramic capacitor is a recommendation. l a y o u t r e c o m m e n d a t i o n 0 . 7 mm 1 . 5 mm 1 . 27 mm 5 . 0 mm s o p - 1 4 l a n d p a t t e r n r e c o m m e n d a t i o n t s s o p - 1 4 l a n d p a t t e r n r e c o m m e n d a t i o n 0 . 35 mm 0 . 65 mm 1 . 7 mm 4 . 7 mm 1 . 7 mm
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 6 a p a 2 1 7 1 p a c k a g e i n f o r m a t i o n t s s o p - 1 4 s y m b o l min . max . 1 . 20 0 . 05 0 . 09 0 . 20 4 . 90 5 . 10 0 . 15 a a 1 c d e 1 l e millimeters b 0 . 19 0 . 30 tssop - 14 4 . 30 4 . 50 min . max . inches 0 . 047 0 . 002 0 . 007 0 . 012 0 . 004 0 . 008 0 . 193 0 . 201 0 . 244 0 . 260 0 . 169 0 . 177 0 0 . 006 a 2 0 . 80 1 . 05 6 . 20 6 . 60 e 0 . 65 bsc 0 . 026 bsc 0 . 031 0 . 041 note : 1 . follow from jedec mo - 153 ab - 1 . 2 . dimension " d " does not include mold flash , protrusions or gate burrs . mold flash , protrusion or gate burrs shall not exceed 6 mil per side . 3 . dimension " e 1 " does not include inter - lead flash or protrusions . inter - lead flash and protrusions shall not exceed 10 mil per side . s 8 0 8 0 0 . 45 0 . 75 0 . 018 0 . 030 seating plane gauge plane view a 0 . 2 5 l a a 2 a 1 see view a d e b c e 1 e
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 7 a p a 2 1 7 1 p a c k a g e i n f o r m a t i o n s o p - 1 4 s y m b o l min. max. 1.75 0.10 0.17 0.25 0.25 a a1 c d e e1 e h l millimeters b 0.31 0.51 sop-14 0.25 0.50 0.40 1.27 min. max. inches 0.069 0.004 0.012 0.020 0.007 0.010 0.010 0.020 0.016 0.050 0 0.010 1.27 bsc 0.050 bsc a2 1.25 0.049 0 8 0 8 l view a 0 . 2 5 seating plane gauge plane note: 1. follow jedec ms-012 ab. 2. dimension ? d ? does not include mold flash, protrusions or gate burrs. mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. dimension ? e ? does not include inter-lead flash or protrusions. inter-lead flash and protrusions shall not exceed 10 mil per side. 3.80 5.80 8.55 4.00 6.20 8.75 0.337 0.344 0.228 0.244 0.150 0.157 d e b e 1 e see view a c h x 4 5 a a 1 a 2
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 8 a p a 2 1 7 1 c a r r i e r t a p e & r e e l d i m e n s i o n s a e 1 a b w f t p 0 od 0 b a 0 p 2 k 0 b 0 section b - b section a - a od 1 p 1 h t1 a d application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 16.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.50 ? 0.10 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tssop - 14 4.00 ? 0.10 8.00 ? 0.10 2.00 ? 0.10 1.5+0.10 - 0.00 1.5 min. 0.6+0.0 0 - 0.40 6.40 ? 0.20 5.20 ? 0.20 1.60 ? 0.20 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 16.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 16.0 ? 0.30 1.75 ? 0.10 7.50 ? 0.10 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 sop - 14 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.10 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 6.40 ? 0.20 9.00 ? 0.20 2.10 ? 0.20 (mm) package type unit quantity tssop - 14 tape & reel 2500 sop - 14 tape & reel 2500 d e v i c e s p e r u n i t
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 9 a p a 2 1 7 1 t a p i n g d i r e c t i o n i n f o r m a t i o n sop-14 user direction of feed tssop-14 user direction of feed
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 0 a p a 2 1 7 1 c l a s s i f i c a t i o n p r o f i l e profile feature sn - pb eutectic assembly pb - free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) ( t s ) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 1 2 0 seconds average ramp - up rate (t smax to t p ) 3 c/second ma x. 3 c/second max. liquidous temperature ( t l ) time at l iquidous (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak package body temperature (t p ) * see classification temp in table 1 see classification temp in table 2 time (t p ) ** within 5 c of the spe cified c lassification t emperature ( t c ) 2 0 ** seconds 3 0 ** seconds average r amp - down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to p eak t emperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. c l a s s i f i c a t i o n r e f l o w p r o f i l e s
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 1 a p a 2 1 7 1 table 1. snpb eutectic process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 22 0 c 3 2.5 mm 220 c 220 c table 2. pb - free process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm ? 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c r e l i a b i l i t y t e s t p r o g r a m test item method description solderability jesd - 22, b102 5 sec, 245 c holt jesd - 22, a108 1000 hrs, bias @ t j =125 c pct jesd - 22, a102 168 hrs, 100 % rh, 2atm , 121 c tct jesd - 22, a104 500 cycles, - 65 c~150 c hbm mil - std - 883 - 3015.7 vhbm ? 2kv mm jesd - 22, a1 15 vmm ? 200v latch - up jesd 78 10ms, 1 tr ? 100ma c l a s s i f i c a t i o n r e f l o w p r o f i l e s ( c o n t . ) c u s t o m e r s e r v i c e a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8


▲Up To Search▲   

 
Price & Availability of APA2171

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X